Bibliography#

[1]

Zoe Budrikis. Athermal Dynamics of Artificial Spin Ice: Disorder, Edge and Field Protocol Effect. PhD thesis, The University of Western Australia, 2012.

[2]

Johannes H. Jensen, Anders Strømberg, Odd Rune Lykkebø, Arthur Penty, Jonathan Leliaert, Magnus Själander, Erik Folven, and Gunnar Tufte. flatspin: A Large-Scale Artificial Spin Ice Simulator. Physical Review B, 106(6):064408, August 2022. doi:10.1103/PhysRevB.106.064408.

[3]

Yue Li, Gary W. Paterson, Gavin M. Macauley, Fabio S. Nascimento, Ciaran Ferguson, Sophie A. Morley, Mark C. Rosamond, Edmund H. Linfield, Donald A. MacLaren, Rair Macêdo, Christopher Hugh Marrows, Stephen McVitie, and Robert L Stamps. Superferromagnetism and Domain-Wall Topologies in Artificial “Pinwheel” Spin Ice. ACS Nano, pages acsnano.8b08884, jan 2019. URL: https://pubs.acs.org/doi/10.1021/acsnano.8b08884, doi:10.1021/acsnano.8b08884.

[4]

Elena Mengotti, Laura J Heyderman, Arantxa Fraile Rodríguez, Frithjof Nolting, Remo V Hügli, and Hans-Benjamin Braun. Real-space observation of emergent magnetic monopoles and associated dirac strings in artificial kagome spin ice. Nature Physics, 7(1):68, 2011.

[5]

Sheng Zhang, Ian Gilbert, Cristiano Nisoli, Gia Wei Chern, Michael J. Erickson, Liam O'Brien, Chris Leighton, Paul E. Lammert, Vincent H. Crespi, and Peter Schiffer. Crystallites of magnetic charges in artificial spin ice. Nature, 500(7464):553–557, 2013. doi:10.1038/nature12399.

[6]

Xiaoyu Zhang, Yuyang Lao, Joseph Sklenar, Nicholas S. Bingham, Joseph T. Batley, Justin D. Watts, Cristiano Nisoli, Chris Leighton, and Peter Schiffer. Understanding thermal annealing of artificial spin ice. APL Materials, 7(11):111112, November 2019. URL: http://aip.scitation.org/doi/10.1063/1.5126713 (visited on 2022-01-24), doi:10.1063/1.5126713.