flatspin.data
#
Data management.
- flatspin.data.col_group(x)#
- flatspin.data.match_column(pattern, columns)#
match column pattern from available columns m -> (mx, my, mz) m.region*x
- flatspin.data.match_columns(patterns, columns)#
match column patterns
- flatspin.data.csv_columns(filename)#
Parse column names at the top of a CSV file
- flatspin.data.save_csv(df, filename)#
- flatspin.data.read_csv(filename, index_col=None)#
- flatspin.data.save_hdf(df, filename)#
- flatspin.data.read_hdf(filename)#
- flatspin.data.hdf_columns(filename)#
- flatspin.data.read_npy(filename)#
- flatspin.data.save_npy(df, filename)#
- flatspin.data.npy_columns(filename)#
- flatspin.data.read_npz(filename)#
- flatspin.data.save_npz(df, filename)#
- flatspin.data.npz_columns(filename)#
- flatspin.data.archive_key(filename)#
- flatspin.data.get_format(filename)#
- flatspin.data.is_archive_format(fmt)#
- flatspin.data.is_archive(filename)#
- flatspin.data.is_tablefile(filename)#
- flatspin.data.list_dir(filename)#
- flatspin.data.list_npz(filename)#
- flatspin.data.list_hdf(filename)#
- flatspin.data.listfiles(filename)#
- flatspin.data.to_table(data)#
- flatspin.data.match_any(name, patterns)#
- flatspin.data.read_table(filename, index_col=None, **kwargs)#
- flatspin.data.save_table(data, filename)#
- flatspin.data.table_columns(filename)#
- flatspin.data.read_tables(filenames, index_col=None)#
- flatspin.data.read_geometry(filename='geometry.csv')#
- flatspin.data.read_vectors(filenames, quantity='mag', t=None)#
- flatspin.data.crop(X, crop, axis=- 1)#
Crop array X along one or more axes crop is a tuple (before, after) for each axis to crop axis specifies which axis to start cropping from
- flatspin.data.rolling_window(X, win_shape, step=1, method='sum')#
Apply a function over a rolling window of X
- flatspin.data.filter_df(df, **kwargs)#
Filter dataframe by key=value or range key=slice(start, stop, step) or list key=[key1, key2, key3]
- class flatspin.data.Dataset(index=None, params={}, info={}, basepath=None)#
- property name#
- keys()#
- items()#
- iterrows()#
- subset(i)#
- filter(**kwargs)#
- drop_duplicates(**kwargs)#
- groupby(key)#
- sort_values(column)#
- row(row=0)#
- id(row=0)#
- static read(basepath)#
- save(basepath=None)#
- file(filename)#
- files(patterns=None, squash=True)#
- tablefile(tablename, squash=True)#
- tablefiles(patterns=None, squash=True)#
- flatspin.data.digitize(X, threshold=0)#
- flatspin.data.bit_array(x, n_bits)#
Convert number x to array of bits
- flatspin.data.array_bit(a)#
Convert bit array a to number
- flatspin.data.vector_grid(pos, vectors, grid_size=None, crop_width=None, win_shape=None, win_step=None, normalize=True, return_grid=False)#
Process vectors on a grid
- flatspin.data.load_output(dataset, quantity, t=None, grid_size=None, crop_width=None, win_shape=None, win_step=None, flatten=True)#
Load output vectors from dataset, with optional post-processing
- flatspin.data.load_input(dataset, t=None, input_column='input')#
Load input data from dataset